Ocultación de Marte por la Luna: 8 de diciembre [ESPAÑA]


El próximo 8 de diciembre, de madrugada, podremos observar desde España la ocultación de Marte por la Luna, un fenómeno poco habitual que coincide además con la oposición del planeta rojo, el momento en que se encuentra más próximo a La Tierra.

Podemos decir que se produce un «eclipse marciano» ya que nuestro satélite natural tapará durante unos minutos a Marte aunque lo interesante de la ocultación son los momentos inmediatamente anteriores y posteriores a ésta, cuando podemos ver el planeta junto a la Luna, ser testigos de sus movimientos orbitales y hacernos una idea de sus diferentes tamaños aparentes ya que la Luna es más pequeña que Marte, pero está mucho más cerca que éste.

Concretamente en el momento de la ocultación la Luna estará a 397.703 kms de nosotros mientras que Marte se encontrará a 82.207.000 de kms.

La última vez que pudimos ver este fenómeno desde España fue el 6 de septiembre de 2020 y algunos astrónomos amateurs consiguieron algunas imágenes espectaculares de aquella ocultación.

El fenómeno de ocultación será visible únicamente desde parte de América del Norte, Groenlandia, Islandia, parte de Europa y parte del norte de África pero la conjunción de ambos astros si será visible desde todo el mundo.

Mapa de visibilidad de la ocultación de Marte (c) Dominic Ford https://in-the-sky.org

Horario de la ocultación de Marte

El inicio de la ocultación varía dependiendo de la posición geográfica desde la que se observe el fenómeno. Te recomendamos que consultes algún programa como Stellarium para comprobar a qué hora se observará desde tu localidad.

En Madrid el fenómeno comenzará a las 06:20UT a una altitud de 24,1º y la reaparición será a las 07:05UT a una altitud de 15,4º por lo tanto tendremos que buscar un lugar con horizonte despejado para poder ver el fenómeno completamente. Recordad que es la madrugada del 7 al 8 de diciembre.

¿Cómo observar la ocultación?

Para observar esta ocultación es recomendable el uso de un telescopio de bastante focal ya que Marte es un planeta con un tamaño aparente bastante pequeño. Podemos utilizar también prismáticos pero éstos no nos darán los mismos aumentos y tan solo veremos Marte como puntito brillante.

Una sesión de fotografía astronómica desde el campo.

Recomendamos que planifiquéis bien la observación y que madruguéis bastante. Se tarda un rato en montar el telescopio y aclimatarlo así que nos tocará levantarnos prontito y aguantar bajo temperaturas gélidas. Para evitar pasar frío os recomendamos que leáis este artículo que escribimos hace algún tiempo sobre ropa para observaciones astronómicas. También es recomendable que llevéis algo de comida y bebida caliente (un café, un caldo, etc…).

Buscad un lugar elevado con el horizonte despejado. El fenómeno se observará aquí en España con la Luna bastante baja en el horizonte, sobre todo al final. No hace falta que el sitio esté muy oscuro ya que no es un fenómeno astronómico al que le afecte demasiado la contaminación lumínica, se puede observar incluso desde la ciudad pero buscad un sitio donde los edificios no os tapen la Luna.

El fenómeno de ocultación y reaparición dura muy poco. Tanto Marte, como la Luna y La Tierra están en continuo movimiento así que estad muy atentos porque es todo un «visto y no visto». Si estáis atentos podréis llegar a ver a Marte desaparecer y aparecer entre las montañas y cráteres del relieve lunar.

Fotografiar la ocultación de Marte

Para fotografiar la ocultación también necesitaremos focales muy largas. Hay que tener en cuenta que la ocultación se produce en fase de Luna llena por lo que el brillo de la Luna saturará la imagen si queremos sacar a Marte bien expuesto. Necesitaremos una cámara con muy alto rango dinámico o bien hacer múltiples exposiciones para intentar hacer luego una composición HDR.

Además, en astrofotografía planetaria la mejor técnica es el «lucky imaging» que consiste en grabar vídeos, pero el diferente movimiento aparente de la Luna y el planeta nos obligará a hacer vídeos muy cortos para poder hacer posteriormente un apilado correcto.

En nuestro canal de Youtube tienes multitud de vídeos de procesado de imágenes planetarias que te pueden servir de ayuda.

¿Cuándo se producirán las próximas ocultaciones de Marte por la Luna?

Si no puedes ver esta ocultación podrás volver a intentarlo en cualquiera de las siguientes fechas.

04/1/2023 Sudáfrica y Madagascar
31/1/2023 México , Centroamérica, Colombia, Venezuela y Ecuador
28/2/2023 Noruega, Suecia, Finlandia y Rusia
17/09/2023 América del norte y central. Colombia, Venezuela y Brasil
16/10/2023 Antártida
05/5/2024 Tailandia, China y Japón
18/12/2024 España, Portugal, Francia, Alemania, Reino Unido, Noruega, Suecia e Islandia

Summary

Event

Ocultación de Marte por la Luna el 8 de diciembre

Location

España,

Starting on

08/12/2022

Ending on

08/12/2022

Description

La Luna ocultará el planeta Marte el próximo 8 de diciembre antes del amanecer. Esta ocultación será visible desde toda España.



Source link

NEQ6 Modification Kit – Astroniklas



May 25

And finally it’s here! I just received the final few pieces for modifying the whole mount. The kit was purchased from Rowan Astronomy, and I truly can’t wait to begin the modernization in my mount’s tracking capabilities. The NEQ6 Pro mount has served me faithfully for over 10 years now and it’s time it gets some tuning and new gears to keep up the new gadgets that its going to carry around while tracking.

I’ll try and post the steps in a guide/tutorial over time with lots of photos and “lessons learned” from this journey

 


The fascination of star gazing had already started during the very first years of my childhood. I was looking up at the night sky with my grandfather every summer night, studying constellations, the phases of the moon cycle, counting satellite passages and by using his binoculars to discover globular clusters of stars. Equipped with star maps from his home-library I was gradually discovering more and more of this fascinating world we call universe.
Even though years went by, the interest and fascination of cosmos had never left me… I found myself occupied with many other things before astronomy finally became my main hobby in recent years.

I was born in Stockholm, Sweden 1979 and grew for the most part of my childhood years in Greece. Later I’ve studied physics at Lund’s university and was hoping to continue with astronomy. At my free time I was an active amateur astronomer in South Sweden, Lund. At some point I was also appointed as chief of observatory for the Tycho Brahe Astronomy Society in Lund.

Circumstances in life led me to move with my family to California. Today I’m working as a sofrware developer within the aviation industry and weather systems for airports. During my off-time, I spend most of my time with my wife Melissa and our daughters.

My main hobbies are astronomy, astrophotography, game development and I was also a member of several astronomy societies in south Sweden but time was never enough to continue being an active member.

This blog is dedicated to my family (Melissa, Vanita and Lena Grace), our friends and to all of you who share the same fascination towards the beauty of this science and all the mysteries yet to be revealed by our constant discoveries!




Source link

Sony A7S III review | Live Science


Key specifications

Type: Mirrorless
Sensor: 12.1MP full frame CMOS
Lens mount: Sony E
ISO range: 80-102,400 (exp 40-409,600)
Viewfinder resolution: 9.44m dots
Video capability: 4K 120p / 1080p 240p
Weight: 1.35lbs
Size: 5.07 x 3.78 x 2.74 inches
Memory card type: 2x CFexpress A / SD

Sony’s Alpha 7 series cameras are split into three categories: the all-purpose A7, the resolution-focused A7R, and the video-oriented A7S. And it’s in the latest iteration of the latter, the Sony A7S III, that we find a camera that may be designed for ultimate video performance, but also offers virtually unparalleled stills performance when it comes to shooting in low light conditions. 

While the A7S III was designed as a specialist video device, a byproduct of its ingenious design also makes it one of the best astrophotography cameras (opens in new tab) on the market. That’s thanks to its low-resolution, back-side illuminated, 12.1MP image sensor and outstanding 80-102,400 ISO sensitivity (which is expandable to 40-409,600). 

In a world where high resolution is all we seem to hear about, you may be wondering why we’re recommending such a low-resolution camera – but that reduced pixel count is exactly why this camera is such a sniper in low light. With just 12.1 million pixels on a full-frame sensor, each individual photosite is much larger and able to capture a greater amount of light – and because the camera only has to process half as many pixels as most rivals, it generates minimal heat (and, therefore, noise).

So whether your reason for shooting is getting the cleanest 4K video imaginable or achieving the best low light, astrophotography and night capture possible, the A7S III offers a truly inspired solution and rather remarkable results. 

Sony A7S III sample image (Image credit: James Artaius)

Sony A7S III: Design

  • Bigger, better buttons
  • Phenomenal viewfinder
  • Fully articulating screen

If you’ve ever handled a Sony A7 camera then you know exactly what you’re getting here. A compact, lightweight body with all the buttons and dials exactly where you’d expect them. Within that, though, there are some very welcome updates, such as a beefier grip and buttons (including the larger REC button), though there are also video-first rearrangements such as the REC, Movie and S&Q buttons being given top-plate priority. This makes sense given the video-first nature of the A7S III, though stills shooters will have to get used to the re-jigging.

The top plate is also where we see one of the most important upgrades, as the newly chunkier electronic viewfinder section accommodates one of the best digital finders we’ve ever seen. It boasts a phenomenal 9.44 million-dot OLED monitor that offers resolution arguably better than the human eye is capable of reading. The result is that every detail of your scene is crystal clear – and in particular, the night sky is rendered with the kind of clarity that astrophotographers have always dreamed of.

While the resolution of the rear touchscreen is comparatively paltry, at just 1.44 million dots, the fact that it is a fully articulating affair is again incredibly welcome. It’s obviously a must for the videographers that the A7S III is aimed at, but it also offers ultimate versatility for stills shooters, especially when the camera is mounted on a tripod.

(Image credit: James Artaius)

Sony A7S III: Functionality

  • Dual native ISO
  • 4K internal at 10-bit 4:2:2
  • Hybrid CFexpress A / SD cards

When it comes to low light / cleanest output performance, the Sony A7S III has three tricks up its sleeve. The first two are the 12.1MP sensor and enormous ISO range, which we’ve discussed. However, the third is equally important: dual native ISO. This means that the camera has two base (in other words, optimum) ISO settings, one at ISO640 and the other at ISO16000. 

When you increase the ISO, more current is run through the circuitry – which introduces noise, and also generates heat (which compounds the noise). By having dual native ISO settings, the camera produces low-noise, low-voltage capture at a medium (640) and high (16000) sensitivities. So, rather than bumping your ISO and introducing noise, you can shoot at either of these settings for imaging that’s clean as a whistle. 

Looking to the video specs, which are the intended selling point of this camera, the A7S III offers a treasure trove of 10-bit 4:2:2 codecs that can be used to record unlimited, uncropped 4K video internally at up to 60p, or at 120p with a minimal 1.1x crop, all while retaining full autofocus performance. And if you want to record to an external monitor (over the full-size HDMI out), you can push that to 12-bit ProRes RAW. You can even capture 240fps in 1080p, though this S&Q mode is video-only.

We’re also supremely grateful to Sony for introducing a hybrid memory card system. The twin slots support the standard SD format, but also accommodate the new CFexpress Type A cards (which, it should be noted, are different to the CFexpress Type B cards supported by Canon, Nikon and co). This means you can upgrade to the newer format as and when you’re ready, while still using your existing SD cards to get shooting right away. 

Sony A7S III sample image (Image credit: James Artaius)

Sony A7S III: Performance

  • Great autofocus
  • Minimal rolling shutter
  • Beware “star eating”

The Sony A7S III delivers the kind of low- and zero-light performance that we’ve only dreamed of in the past. Shooting with all the aforementioned technology means that you walk away with images possessing maximum brightness and minimum noise, with a claimed 15 stops of dynamic range (and from our tests, we’ve no reason to doubt that) whether you’re capturing stills or video. 

As a video device it boasts fantastic autofocus performance, with a fantastic hybrid AF system, along with minimal rolling shutter (the Jell-O-like warping of vertical objects, when you pan side to side) and capable image stabilization (though Sony still lags behind the stabilization of all its rivals). 

The only thing to be wary of is the Achilles heel of many Sony A7 bodies, the “star eater” phenomenon. This is where the camera’s overenthusiastic noise reduction system ‘eats’ stars that it misidentifies as noise or hot pixels. This tends to rear its head when shooting with particularly sharp wide-angle lenses, and / or at extreme ISOs, so be mindful if you start to see stars disappearing! 

Sony A7S III sample image (Image credit: James Artaius)

Should you buy Sony A7S III?

If you’re a video-first shooter, then you shouldn’t even think twice about picking up the Sony A7S III. There’s a reason that it’s the camera of choice for the majority of professional YouTubers and content creators. However, this is far more than a video-centric device. 

For the cleanest possible low-light performance, particularly when it comes to night and astrophotography, the A7S III is exceptionally compelling. The only strike against it is that you may find yourself limited by the 12.1MP resolution. This is more than fine for video, online and even for small prints, but if you want to produce large prints of your work then you may want to consider the merits of a higher resolution camera – even though it won’t be able to match the Sony’s unique combination of back-side illuminated sensor with dual native ISO. 

Sony A7S III sample image (Image credit: James Artaius)

If this product isn’t for you

For astrophotographers familiar with conventional cameras, the obvious alternative is the Canon EOS Ra – a dedicated astro camera, with a full frame sensor boasting more than twice as many megapixels, a modified IR filter array (for superior star-shooting capabilities) and an extremely useful 30x magnification (compared to the Sony’s meager 4x). 

If you’re savvy enough to try a dedicated CCD camera, then the ZWO ASI183MC (Color) (opens in new tab) packs a Sony-made sensor and a dedicated cooling system to reduce noise, while still delivering 12 stops of dynamic range and impressive spectral response. 

Finally, don’t overlook a camera that can fit into your pocket: a high end smartphone. Our pick is the Samsung Galaxy S22 Ultra (opens in new tab), which offers fantastic bang-for-buck imaging – especially for shooting the stars, with an f/1.8 primary camera and an f/2.2 ultra-wide, and Pro mode enabling you to shoot up to 30-second exposures and adjust the ISO to 3200. 



Source link

Save on Sigma and Tamron lenses during this early Black Friday sale


We may earn revenue from the products available on this page and participate in affiliate programs. Learn more ›

Sigma and Tamron lenses already offer lower-cost yet quality alternatives to Canon, Sony, and Nikon lenses. And right now, they are even more affordable during an early Black Friday sale on Amazon. If you’ve been considering getting a new lens to fill out your arsenal of gear or are a generous soul and want an exciting gift for a photographer, it’s a great time to do so.


A good wide-angle lens is something every photographer should have available. Designed for Sony APS-C photographers, this lens offers a 35mm equivalent focal length of 24mm. It provides an extremely fast f/1.4 maximum aperture for strong low-light performance, making it a great tool for capturing wedding receptions or night skies. The wide aperture also helps to create separation between your subject and the background and even results in some attractive bokeh. It’s one of the best APS-C wide-angle lenses you can get for your Sony camera, and this price makes it even more enticing.


Sony APS-C users sure have a good selection of affordable wide-angle lenses to choose from during this early Black Friday sale. This Tamron lens offers a 16-30mm equivalent focal length, which is an ideal range for real estate, landscape, astrophotography, and even event coverage. It offers a lot of sharpness and quality in a very compact body, so it won’t feel out of place on the smaller APS-C cameras. And it’s moisture-resistant, giving you peace of mind if you get caught in bad weather.

Additional Tamron lens deals:

  • Tamron SP 150-600mvm F/5-6.3 Di VC USD G2 for Nikon Digital SLR Cameras $1,199.00 (was $1,399.00)
  • Tamron 17-28mm f/2.8 Di III RXD for Sony Mirrorless Full Frame/APS-C E Mount $799.00 (was $899.00)
  • Tamron 150-500mm f/5-6.7 Di III VC VXD Lens for Full Frame Sony $1,299.00 (was $1,399.00)
  • Tamron SP 70-200mm F/2.8 Di VC G2 for Canon EF DSLR $1,199.00 (was $1,299.00)
  • Tamron 70-180mm F/2.8 Di III VXD for Sony Full Frame/APS-C E-Mount $1,099.00 (was $1,199.00)
  • Tamron SP 150-600mm F/5-6.3 Di VC USD G2 for Canon Digital SLR Cameras $1,199.00 (was $1,399.00)
  • Tamron 17-70mm f/2.8 Di III-A VC RXD Lens for Sony E APS-C $749.00 (was $799.00)
  • Tamron 18-400mm F/3.5-6.3 DI-II VC HLD All-In-One Zoom For Nikon APS-Cv Digital SLR Cameras $599.00 (was $649.00)

Additional Sigma lens deals:





Source link

White Pocket Arizona with Orion, Venus and the Zodiacal Light – David Lane Astrophotography


On a pleasant evening at White Pocket Arizona during the new moon in April 2018, the zodiacal light reappeared over the desert southwest. Venus, which had been burning brightly in the sky after sunset dropped to just over the horizon after astronomical dark. The strong wind of the previous day had died down to an occasional cool breeze. Some dust still lingered in the atmosphere as evidenced by the ruddy horizon, but the Zodiacal Light showed forth with great effect.

It was surprisingly pleasant for April in the Southwest. Temperatures drifted in the low 50s and there was just a bit of occasional wind. Oddly frogs chorused from an area below me and center-left in the image. It was had to imagine as the temperature continued to drop that a multitude frogs were singing a loud and one assumes bawdy barupppp over and over.

By the time the shot was over (30-40 minutes), the temperature had dropped enough that I pulled my coat tight around me and zipped it up over my face. Holding still in the low 40s was getting nippy. The frog band stilled as well and I was left with just a great night sky to contemplate and watch as Orion slipped below the horizon. I sighed, gathered up my gear and headed to back to Jimmy.

Despite having been hurried to get this enormous shot finished before Venus slipped from view, I managed to capture what even in the camera was an impressive image. This image is an astounding 80 images stitched together. 40 images of the sky with tracking and 40 images of the ground.

 

Shot at 85mm, f1.3, ISO 8000 and various exposures. 3rd pano of water in star focus.





Source link

Mosaic of M16, M17, M18 and NGC6604


This is a 3 panel wide field mosaic of NGC6604, M16 and M17 in H-alpha, OIII and RGB. Also in the same field of view are M18 and IC4701, along with a view more open star clusters and nebulas. It was my main project on my astrotrip to Namibia this year and I spent the first 5 nights collecting the data for this. The end result is a highly detailed image of 20378 x 11160 pixels which contains a lot of very interesting objects and detailed features.


Click to view the full resolution version of the image

NGC6604 and Sh2-54
NGC 6604 is an open star cluster in the constellation Serpens. The associated nebula is a cloud of glowing hydrogen gas which known as SH2-54.

M16

The Eagle Nebula, also known as the Star Queen Nebula, IC4703 and NGC6611 is a very famous emission nebula surrounding a young open star cluster. It became famous because of the iconic Hubble image of the so called ‘Pillars of Creation’ which is a region of gass where intense star formation is happening.

When you look in more detail into the center of the nebula, at the region around the Pilars of Creation you can discover more interesting features. Just at the base of the Pilars of Creation you can see Herbig-Haro object 216. (the more pinkish feature that is just beneath the 2nd pilar)
Within M16 you can also see some beautiful Bok Globules that really seem to be ‘floating’ there.

M17
The Omega Nebula or Swan Nebula is another famous HII region. This one lies in the constellation of Sagittarius at a distance of around 5,000 light-years from earth. M17 is actually considered to be one fo the brightest and most massive star-forming regions of our galaxy. Open star cluster NGC 6618 lies embedded in the nebulosity and is heating up the gases of the nebula.

M17 shows some very interesting features in it’s nebulosity. There seems to be a ‘blow out’ to the left where you can see 3 shockwaves in the gass if you look careful. Furthermore the OIII part is extending quite far to the lower left. Further down in the lower left corner there are a few very thin OIII ‘whisps’ (which remind me of veil nebula). I found out that there seems to be a Supernova Remnant behind M17, so this could be filaments belonging to that structure. It is called G16.05-0.57.
The HII region next to that however, seems to also be associated with a SNR, G015.1-01.6 so this could also be from that source. At least it’s quite clear that it is a SNR.

IC4701
Above M17 and M18 you can see another emission nebula which is IC4701. This fov also contains some interesting (not so) dark nebulas.

Throughout the whole field of view you can find more very interesting HII regions and dark clouds

Processing
I calibrated the RGB data in Astro Pixel Processor and NB data in PixInsight. Mosaic registration of all the panels for all channels was done using Astro Pixel Processor. I then took these results and processed them in PixInsight.
There I used a combination of PixelMath and LRGBCombination on the non-linear Ha and OIII frames to create a ‘natural’ bi-color for which I used a max(Ha, OIII) for the luminance. I then used a max from Ha, OIII and the CIE-L component of the real RGB image as Luminance for the SHO-AIP script. I used the real RGB, Ha, OIII and the resulting Luminance in this script to get a natural HaOIIIRGB image. As a final step I used a Luminance mask to combine the bi-color image with the HaOIIIRGB image.
In all this I did of course all kinds of processing to get the frames in the right state to use in the different channel combination methods.
One thing worth noting is that you should be very careful (or just avoid) using LinearFit to level images before combination. In this case this resulted in very unnatural cores every time I did so. Also, one can argue it doesn’t make sense in some cases to assume a same level of signal in different channels. Manual HistogramTransformation and other processes give you far greater control over the result in every step.

Acquisition details
Image taken with monochrome Nikon D600 on a APM107/700 with Riccardi reducer and modified Nikon D600 on a TS Quadruplet 480/80, mounted on Fornax 51 and guided with MGEN.

Panel I – NGC6604
Ha 29x12min ISO400
OIII 13x12min ISO400
RGB 27x12min ISO400

Panel II – M16
Ha 24x12min ISO400
OIII 16x12min ISO400
RGB 23x12min ISO400

Panel III – M17
Ha 25x12min ISO400
OIII 16x12min ISO400
RGB 35x12min ISO400

Location: Astrofarm Kiripotib, Namibia




Source link

¿Cómo encontrar el Norte? – Cielos Boreales


Puede parecer algo trivial si eres un observador astronómico experimentado y conoces el cielo mejor que tu casa pero para el recién llegado es una pregunta básica que todos nos hemos hecho alguna vez ¿Cómo encontrar el norte?

La respuesta más obvia es ¡Pues con una brújula! Pero ¿Y si no llevamos una brújula encima? o ¿Y si la brújula funciona mal? En algunas ocasiones una brújula puede funcionar mal debido a que nos encontremos cerca de un yacimiento de hierro o magnetita, por ejemplo. Además, una brújula solo nos indica la situación del norte magnético, no geográfico. Esto sucede también con las brújulas que incorporan nuestros teléfonos móviles.

En observación astronómica, sobre todo nos interesa conocer el norte geográfico si estamos usando una montura ecuatorial y estamos en el hemisferio norte (los habitantes del hemisferio austral necesitan localizar el sur geográfico). Por eso a continuación te daremos algunos trucos para encontrar el norte geográfico sin la ayuda de una brújula.

Para usar correctamente un telescopio con montura ecuatorial es necesario orientarlo al norte.

Cómo encontrar el norte con las estrellas

Para encontrar el norte de noche podemos guiarnos por las estrellas si el cielo está despejado. La forma más fácil es buscar la estrella polar (Polaris). Esta estrella está muy cerca del polo norte celeste (PNC) aunque no se encuentra exactamente en él (está a unos 0,7 grados de distancia).

Para localizar Polaris la forma más sencilla es guiarnos por la Osa Mayor, quizá la constelación más reconocible del cielo por su forma de cazo. Si trazamos una línea recta desde las estrelas Dubhe y Merak que son las que están más alejadas «del mango del cazo» y seguimos 5 veces la distancia que separa a éstas llegaremos a una estrella a simple vista más o menos solitaria que forma parte de la constelación de la Osa Menor (también con forma de cazo pero más pequeño). Esa estrella es Polaris.

Al contrario de lo que mucha gente piensa, la estrella polar no es la más brillante del cielo ni mucho menos.

En ciertas épocas del año, como por ejemplo en invierno, es posible que nos cueste encontrar la Osa Mayor porque esté muy baja en el cielo. En ese caso podemos ayudarnos de la constelación de Casiopea que tiene forma de letra «M» o «W». Ayudándonos de las tres estrellas centrales si seguimos la dirección de la intersección imaginaria de éstas en la parte cóncava también llegaremos a Polaris.

Si no vemos el norte porque hay nubes pero seguimos viendo otras zonas del cielo con estrellas todavía es posible orientarnos si conocemos las constelaciones y sabemos la hora a la que nos encontramos. Otra opción es guiarnos por el brillo de la Luna que siempre se encontrará cerca de la línea de la eclíptica y que siempre va de este a oeste pasando por el sur en su culminación si nos encontramos en el hemisferio norte.

Además, teniendo en cuenta que en cuarto creciente tiene forma de «D», sus cuernos apuntan al Este mientras que en fase de cuarto menguante, con forma de «C», los cuernos apuntan al Oeste.

En Invierno también podremos encontrar el sur ayudándonos por la constelación de Orión. Si trazamos una línea recta entre las estrellas Betelgeuse y Rigel y extendemos su distancia hacia el horizonte encontraremos el sur geográfico.

Una línea recta imaginaria desde Betelgeuse a Rigel nos lleva al Sur.

Cómo encontrar el norte sin brújula de día

De día ya no vemos las estrellas, o mejor dicho, solo vemos una, nuestro Sol. Él nos puede ayudar a orientarnos ya que a medio día se encontrará culminando hacia el sur (recordad que siempre hablamos en relación a observadores del hemisferio norte).

El Sol sale aproximadamente por el este y se oculta por el oeste, más o menos. Decimos más o menos porque depende de la época del año (en verano la eclíptica diurna está más alta) y también depende de la latitud a la que nos encontremos. Teniendo en cuenta estos datos también podemos orientarnos más o menos hacia en norte tomando el Sol como referencia.

Si disponemos de bastante tiempo podemos estudiar el avance de las sombras proyectadas por el Sol para marcar una línea en su recorrido que nos indicarán el sentido Este-Oeste. Una vez trazada la línea sabemos que la perpendicular es Norte-Sur.

Otro truco si nos encontramos en la naturaleza es observar hacia dónde crece el musgo. En estructuras verticales como árboles éste suele crecer hacia el norte en zonas húmedas.

Encontrar el norte con un reloj y el Sol

Esto es bastante curioso pero muy práctico. El método es más o menos preciso dependiendo de la época del año y nuestra latitud. Si disponemos de un reloj de agujas y apuntamos la manecilla de las horas hacia el Sol el punto intermedio entre la manecilla de las horas y la posición de las 12 en la esfera indica el sur, por lo tanto el lado contrario de esa bisectriz indica el norte. Recordad usar la hora solar para este método, en España sería 1 hora menos en invierno y 2 en verano.



Source link

NEQ6 Modification – Day 2


And so I’ve decided now to open up the mount and begin the process. I really helps a lot watching a few YouTube videos and reading Rowan Astronomy‘s instructions thoroughly.

There are a few minor steps that would easily make me damage my mount. Below are a few photos attached from the very first steps of taking the mount apart.

#jtg-4312 .modula-item .jtg-social a, .lightbox-socials.jtg-social a{ color: #ffffff }#jtg-4312 .modula-item .jtg-social svg, .lightbox-socials.jtg-social svg { height: 16px; width: 16px }#jtg-4312 .modula-item .jtg-social a:not(:last-child), .lightbox-socials.jtg-social a:not(:last-child) { margin-right: 10px }#jtg-4312 .modula-item .figc {color:#ffffff;}#jtg-4312 .modula-item .modula-item-content { transform: scale(1) }#jtg-4312 { width:100%;}#jtg-4312 .modula-items{height:800px;}@media screen and (max-width: 992px) {#jtg-4312 .modula-items{height:800px;}}@media screen and (max-width: 768px) {#jtg-4312 .modula-items{height:800px;}}#jtg-4312 .modula-items .figc p.description { font-size:14px; }#jtg-4312 .modula-items .figc p.description { color:#ffffff;}#jtg-4312.modula-gallery .modula-item > a, #jtg-4312.modula-gallery .modula-item, #jtg-4312.modula-gallery .modula-item-content > a:not(.modula-no-follow) { cursor:zoom-in; } #jtg-4312.modula-gallery .modula-item-content .modula-no-follow { cursor: default; } #jtg-4312 .modula-item .modula-item-overlay, #jtg-4312 .modula-item.effect-layla, #jtg-4312 .modula-item.effect-ruby,#jtg-4312 .modula-item.effect-bubba,#jtg-4312 .modula-item.effect-sarah,#jtg-4312 .modula-item.effect-milo,#jtg-4312 .modula-item.effect-julia,#jtg-4312 .modula-item.effect-hera,#jtg-4312 .modula-item.effect-winston,#jtg-4312 .modula-item.effect-selena,#jtg-4312 .modula-item.effect-terry,#jtg-4312 .modula-item.effect-phoebe,#jtg-4312 .modula-item.effect-apollo,#jtg-4312 .modula-item.effect-steve,#jtg-4312 .modula-item.effect-ming{ background-color:#ffffff; }#jtg-4312 .modula-item.effect-oscar { background: -webkit-linear-gradient(45deg,#ffffff 0,#9b4a1b 40%,#ffffff 100%);background: linear-gradient(45deg,#ffffff 0,#9b4a1b 40%,#ffffff 100%);}#jtg-4312 .modula-item.effect-roxy {background: -webkit-linear-gradient(45deg,#ffffff 0,#05abe0 100%);background: linear-gradient(45deg,#ffffff 0,#05abe0 100%);}#jtg-4312 .modula-item.effect-dexter {background: -webkit-linear-gradient(top,#ffffff 0,rgba(104,60,19,1) 100%); background: linear-gradient(to bottom,#ffffff 0,rgba(104,60,19,1) 100%);}#jtg-4312 .modula-item.effect-jazz {background: -webkit-linear-gradient(-45deg,#ffffff 0,#f33f58 100%);background: linear-gradient(-45deg,#ffffff 0,#f33f58 100%);}#jtg-4312 .modula-item.effect-lexi {background: -webkit-linear-gradient(-45deg,#ffffff 0,#fff 100%);background: linear-gradient(-45deg,#ffffff 0,#fff 100%);}#jtg-4312 .modula-item.effect-duke {background: -webkit-linear-gradient(-45deg,#ffffff 0,#cc6055 100%);background: linear-gradient(-45deg,#ffffff 0,#cc6055 100%);}#jtg-4312 .modula-item:hover img { opacity: 0.5; }#jtg-4312 .jtg-title {font-weight:400; }#jtg-4312 p.description {font-weight:normal; }#jtg-4312:not(.modula-loaded-scale) .modula-item .modula-item-content { transform: scale(1) translate(0px,0px) rotate(0deg); }@keyframes modulaScaling { 0% {transform: scale(1) translate(0px,p0x) rotate(0deg);} 50%{transform: scale(1) translate(0px,0px) rotate(0deg);}100%{transform: scale(1) translate(0px,p0x) rotate(0deg);}}#jtg-4312.modula-gallery .modula-item.effect-terry .jtg-social a:not(:last-child){margin-bottom:10px;}.modula-fancybox-container.modula-lightbox-jtg-4312 .modula-fancybox-caption .modula-fancybox-caption__body, .modula-fancybox-container.modula-lightbox-jtg-4312 .modula-fancybox-caption .modula-fancybox-caption__body p {text-align:left}.modula-fancybox-container.modula-lightbox-jtg-4312 .modula-fancybox-bg{background:rgba(30,30,30,0.9);opacity:1 !important;}html body .modula.modula-columns .modula-items.grid-gallery .modula-item.effect-under .modula-item-content { height:auto;}#jtg-4312 .modula-video-icon { position: absolute; width: 30px;top: 50%;left: 50%;transform: translate(-50%,-50%); }#jtg-4312 .modula-video-icon { z-index:10; }#jtg-4312 .modula-video-icon path { fill : #FFF }@media screen and (max-width:480px){#jtg-4312 .modula-item .figc .jtg-title { font-size: 12px; }#jtg-4312 .modula-items .figc p.description { color:#ffffff;font-size:10px; }}

The post NEQ6 Modification – Day 2 appeared first on Astroniklas.



Source link

Celestron NexStar 8SE Telescope Review


The Celestron NexStar 8SE computerized telescope is one of the best-selling telescope packages of all time. It features a large aperture optical telescope and a computerized GoTo mount.

The NexStar series of SCTs have been around for over a decade, and I was finally able to experience this beginner-friendly telescope for myself.

I was impressed with the completeness of this package, from the 1.25″ 25mm eyepiece and diagonal, to the red dot finder mounted to the 8-inch OTA.

Celestron NexStar 8SE Video Review.

This is a primarily visual telescope, meant for enjoying views of the moon, planets, and the brighter nebulae and galaxies through the eyepiece.

But what about astrophotography? The design of the tracking telescope mount (fork-mounted Alt-Az) wasn’t designed for it, but is it a complete waste of time?

In this post, I’ll show my results using Celestron’s NexYZ smartphone adapter. If you’re in the market for a grab-and-go telescope (that excels in views of the moon and planets), I think you will enjoy my review of the Celestron NexStar 8SE.

Celestron NexStar 8SE Review

Is this the all-in-one telescope package that does it all? Not quite, but that’s okay. It gets the important parts right. The telescope OTA (optical tube assembly) is top-notch, while the mount is just enough to get you by. 

I asked the AstroBackyard community on Facebook how they felt, and almost all of them had amazing things to say about this telescope. From seeing their first-ever view of the planet Saturn to surprisingly impressive astrophotography, the NexStar 8SE is a widely appreciated piece of kit. 

Here is a spectacular photo of the planet Jupiter, captured by Christian Ralph using his Celestron NexStar 8SE telescope. 

The planet Jupiter captured using the Celestron NexStar 8SE (Christian Ralph).

There are a few quirks of course (the red dot finder scope is rudimentary, and the single-arm fork mount is a little wobbly), but overall everyone seemed to agree that it was a smart purchase and they got a lot of use out of it. Some people even mentioned that had sold the scope, and wished that they had kept it. 

As an astrophotographer, the first thing I noticed was the Alt-Az fork mount, and that’s not what you want if your primary interest is long-exposure astrophotography. (An equatorial telescope mount is best).

But, people have taken impressive images with this telescope, it just requires a different approach. If you’re into photographing planets the Celestron NexStar 8SE will work out just fine. This 8″ SCT  was meant for crisp views of solar system objects, and that is where it excels. 

If you look at the specifications for this telescope, it highlights some pretty impressive potential for a variety of visual observations. I can see why beginners are drawn to this package as their first serious scope.

The NexStar 8SE is great for spur-of-the-moment observing sessions of the moon or planets.

NexStar 8SE Telescope Specifications

  • Aperture: 203 mm (8″)
  • Telescope Focal Length: 2032 mm
  • Focal Ratio: F/10
  • Camera/Eyepiece Connection: 1.25″ Nosepiece
  • Diagonal Included: Yes
  • Tripod Weight: 10 lbs
  • Tube Weight: 12.5 lbs
  • Computerized: Yes
  • Drive Type: DC Servo motors
  • Optical Design: Schmidt-Cassegrain
  • Secondary Obstruction: 35mm
  • Tube Diameter: 226mm
  • Tube Length: 432mm

Included Items

  • 8-inch Schmidt-Cassegrain OTA
  • NexStar SE Mount: Motorized Alt-Azimuth/ GoTo
  • Tripod with Adjustable Steel Legs
  • Red Dot Finderscope
  • Accessory Tray
  • NexStar+ Hand Controller
  • 1.25-inch Star Diagonal
  • 1.25-inch, 25 mm Eyepiece
  • Mini-USB Port
  • Celestron Starry Night Software
  • 2 Year Warranty

First Impressions

Setting up the Celestron NexStar 8SE for the first time was a quick and painless experience. Once assembled, the entire kit is light enough to be carried around the yard if necessary.

I used an AC adapter to plug the mount into household power in the backyard, but this mount can also be powered via 8 x AA batteries for complete mobility. 

Although the red dot finderscope is simple and inexpensive, it is surprisingly effective at confirming the pointing direction of this high magnification telescope.

Tripod

Right out of the gate, I noticed a few things. The tripod I would call “medium-duty”, it’s similar to the one that comes in the newest Sky-Watcher Star Adventurer GTI package. It seems stable enough for a mount and scope of this size, and it keeps weight down for travel.

The trade-off of a heavier more stable tripod probably isn’t worth the extra weight. The mount head connects securely using 3 threaded bolts. It has a nice design and it feels secure.

Single Arm Fork Mount

The mount head unit and fork arm have a plastic outer casing, reminding you that this is a budget-friendly GoTo telescope package. The Celestron NexStar remote seats neatly inside of the arm, which is a clever space-saving design.

Users of this Celestron NexStar 8SE mentioned that a dual-arm fork design (like the one on the CPC series telescopes) would help the OTA feel a lot more secure. The motorized mount head is where the cost savings come into play. It feels a little “toy-ish”, but the 8″ NexStar OTA reminds us that this is a serious telescope.

Schmidt-Cassegrain Telescope

It’s an 8-inch Schmidt Cassegrain telescope with a focal length of 2032mm at F/10. The orange tube Celestron SCT has been in production since 1970, and for good reason. It packs plenty of light-gathering power into a compact, practical size.

The optics on this telescope deliver crisp, high-contrast views, thanks in part to Celestron’s Starbright XLT optical coatings.

This telescope collects light at an f-ratio of F10, which is much “slower” than a typical reflector or refractor telescope. This means that the fainter nebulae and galaxies will be tough to observe, especially if you’re observing the night sky from a light-polluted city.

The 8″ SCT optical tube assembly mounted to the single-arm fork mount. 

NexStar Hand Controller

The Celestron NexStar 8SE includes a NexStar hand controller, with over 40,000 objects in its database. The hand controller fits neatly inside the arm of the fork mount, and can also be extended for use while at the eyepiece. This is a clever design and works well in the field. 

25mm Plossl Eyepiece

A 1.25″ 25mm Plossl eyepiece was included with the telescope. This is a useful magnification for a variety of objects in the night sky from planets, to bright galaxies.

It is important to use an eyepiece that does not have a high magnification when aligning the telescope. You may want to purchase an even wider eyepiece (such as a 32mm Plossl) for this purpose. 

The higher the magnification of the eyepiece, the more “searching” you will have to do to align the telescope mount to a bright star.

Portability

Even with the large aperture SCT telescope, the entire kit weighs just 24 lbs in total. The mount, telescope, and tripod can break down into individual parts for easier transport.

This telescope is much easier to bring with you to a dark sky site than an equivalent aperture Dobsonian telescope.

The fully-assembled setup can easily be lifted up and moved across the yard, or brought back into your house or garage. 

GoTo Computerized Mount

One of the biggest draws to this telescope, aside from the compact, travel-friendly design, is its computerized GoTo functionality. You can choose an object you would like to view on the hand controller, and the telescope will point right to it.

Of course, to do this, the telescope needs to be where it is on earth for accurate pointing. Luckily, this is a dead-simple process called “SkyAlign“.

The SkyAlign feature is used on several Celestron mounts including the NexStar GT, NexStar SLT, NexStar SE, NexStar Evolution, SkyProdigy, Astro Fi WiFi, and CPC telescopes.

To align the mount you need to point to (and center) three bright stars in the night sky. 

You don’t have to know the location or name of a single star in the sky for it to work. You simply choose your location from the database, I chose Toronto (close enough), and point the scope at three bright stars. Any 3 bright stars.

To help you point directly at them, you can use the included red dot finder. Keep both eyes open, and move the scope until the red dot is directly on the star. When you look in the eyepiece, it should be right there, or very close.

Then center the star, and confirm these 3 positions. Once that is done, your telescope knows exactly where to point.

On my first night out with the Celestron NexStar 8SE, I chose to observe the Ring Nebula in the cancellation Lyra. Sure enough, with the simple SkyAlign routine performed beforehand, the telescope slowed right to it, first try.

Now that is a positive first experience. Bravo Celestron.

Recommended Accessories

To really enjoy using this high magnification telescope, do yourself a favor and pick up a nice wide-field eyepiece. As I mentioned. the NexStar 8SE package includes a 1.25″ 25mm Plossl, which is a decent start.

A wider eyepiece will make the star alignment process a little easier and makes for a brighter view. I tested an old Celestron 32mm Plossl eyepiece on the 8SE, and it provided a slightly wider, brighter view through the telescope.

A wider (lower magnification) eyepiece will make the SkyAlgin process easier because the alignment star will be easier to locate in a larger area of sky. If you are looking for a suggestion, I recommend the Tele Vue 32mm Plossl Eyepiece

If it’s planets you’re after, get a decent high magnification eyepiece too, something in the 10mm or lower range. Keep in mind that the view through a high magnification eyepiece under 10mm will be much dimmer.

The Celestron Luminos 10mm eyepiece is great for viewing planets up-close.

Celestron NexYZ Smartphone Adapter

Yes, you can do astrophotography with the Celestron NexStar 8SE! The simplest way to get started is to use your existing smartphone, and hold it up to the eyepiece of the telescope.

Using this method (eyepiece projection astrophotography), you can capture impressive images of the Moon, Jupiter, Saturn, and even Mars. Keeping the phone still enough for a photo, and lining the camera lens up with the center of the eyepiece is the tricky part.

Thankfully, the Celestron NexYZ smartphone adapter can help with these tasks, thanks to a clever 3-axis design. The adapter clamps on to the objective of the eyepiece (both 1.25″ and 2″ eyepieces), and securely holds your phone in place.

The Celestron NeXYZ Smartphone Adapter.

You can use the 3-axis adjustment knobs to center your smartphone’s camera lens in the eyepiece. Using the “pro” or “manual” mode of your camera, you can fine-tune the camera settings to take an amazing photo of the Moon’s surface or Saturn’s rings. 

Smartphone astrophotography with the Celestron NexYZ adapter is best for pictures of the moon and bright planets. Deep-sky astrophotography (of galaxies and nebulae) will require additional hardware such as the Celestron NexStar SE & Evolution Wedge and the proper adapter and t-ring for your DSLR.

Related Post: How to Attach a Camera to Your Telescope

Best Objects to See in the NexStar 8SE

The Celestron NexStar 8SE is best used for high-magnification views of the Moon and planets. Using the included 25mm Plossl eyepiece, the views of Saturn and Jupiter are incredible. 

The SkyAlign feature allows you to get up and running quickly, so you can start observing sooner. Here are some examples of objects you can enjoy seeing through the Celestron NexStar 8SE, even from your backyard:

  • The Moon
  • Saturn
  • Mars
  • Jupiter
  • Venus
  • Ring Nebula
  • Dumbbell Nebula
  • Pleiades
  • Andromeda Galaxy
  • M13 Globular Cluster

Final Thoughts

I have a soft spot for equipment that makes the astronomy experience welcoming and approachable. Too many beginners have had a frustrating experience on their first night under the stars, and many of them do not return to the hobby.

The NexStar 8SE can deliver you your first view of the planet Jupiter, or the Andromeda Galaxy. Getting to this point is straightforward and rewarding, and does not require existing comprehension of the night sky. 

The single-arm fork-mount design isn’t perfect, and it sacrifices stability for a compact, portable design. In a nutshell, the telescope and optics are fantastic, the mount is not.

When slewing the telescope at slower speeds (4 or below), I noticed that the response is “laggy”, meaning that the telescope does not move for a second or two after pressing the arrow button. 

Be advised that touching the telescope or eyepiece while viewing an object will result in a shaky image, so keep those hands off while observing. This is something you will need to get used to. 

The NeXYZ smartphone adapter is a great little design, probably the best one on the market. But capturing anything other than the moon or planets will be challenging.

Others have done it, but unless you’re willing to put the time in using a phone for deep-sky, stick to solar system objects.

You can fasten a DSLR camera or planetary camera to the telescope for much better images, but to accurately track objects you will need to invest in a wedge to orient the telescope towards the celestial pole. 

The NexStar SkyAlign system is dead simple to perform, and you can skip over the polar alignment process and get straight to observing. The telescope can find and follow an object in the night sky for you.

Saturn stayed in the center of the eyepiece for almost 20 minutes at over 2000mm focal length – try to do that with a manual dob.

The 8″ telescope has enough aperture to deliver amazing views of the moon, planets, and brighter nebulae and galaxies. If the price of the 8SE is too steep for you, you have options. This telescope comes in 4, 5, and 6-inch versions.

The NexStar series of computerized Schmidt-Cassegrain Telescopes.

Overall the Celestron NexStar 8SE is a remarkable product, and I highly recommend it to anyone looking for a practical, travel-friendly, visual scope that allows you to get your feet wet in astrophotography.

Until next time, clear skies!

I was loaned this telescope from OPT for testing purposes, and was under no obligation to provide a positive review, nor was I compensated in any way for this article (or video). 

Where to Buy:

Related Posts:

Related Posts

Share This

Related Tags



Source link

LBN 534 – Andrew’s Astronomy Blog


It’s been a while since I last visited this object, a dust cloud on the Andromeda / Cassiopeia border (http://andrewluck.me.uk/?p=1058 & http://andrewluck.me.uk/?p=948). This is the first time with a monochrome camera and RGB filters; previous attempts have been with the KAF8300 equipped QHY9C OSC camera.

The field with the G3-16200 is much larger and provides a better context for the object. Better data, and much improved processing skills have revealed a lot more of the surrounding faint clouds.

This is about 12 hours of RGB data acquired in 10 minute subframes. I’m not a fan of LRGB imaging and very rarely use luminance, preferring instead to spend longer capturing the colour data at bin 1×1. Processing is exclusively Pixinsight.

Published in Astronomy Now (Jan 2018)



Source link