Preliminary data on a novel smart glasses system for measuring the angle of deviation in strabismus


  • Li JPO, Liu H, Ting DSJ, Jeon S, Chan RVP, Kim JE, et al. Digital technology, tele-medicine and artificial intelligence in ophthalmology: a global perspective. Vol. 82, Progress in Retinal and Eye Research. Elsevier Ltd; 2021.

  • Kim SE, Logeswaran A, Kang S, Stanojcic N, Wickham L, Thomas P, et al. Digital Transformation in Ophthalmic Clinical Care during the COVID-19 Pandemic. Vol. 10, Asia-Pacific Journal of Ophthalmology. Lippincott Williams and Wilkins; 2021. p. 381–7.

  • de Jongh E, Leach C, Tjon-Fo-Sang MJ, Bjerre A. Inter-examiner variability and agreement of the alternate prism cover test (APCT) measurements of strabismus performed by 4 examiners. Strabismus. 2014;22:158–66.

    Article 

    Google Scholar 

  • Holmes JM, Chandler DL, Christiansen SP, Birch EE, Bothun E, Laby D, et al. Interobserver reliability of the prism and alternate cover test in children with esotropia. Arch Ophthalmol [Internet]. 2009;127:59. http://archopht.jamanetwork.com/article.aspx?doi=10.1001/archophthalmol.2008.548.

    Article 

    Google Scholar 

  • Schutte S, Polling JR, van der Helm FCT, Simonsz HJ. Human error in strabismus surgery: quantification with a sensitivity analysis. Graefe’s Arch Clin Exp Ophthalmol. 2009;247:399–409.

    Article 

    Google Scholar 

  • Cheng W, Lynn MH, Pundlik S, Almeida C, Luo G, Houston K. A smartphone ocular alignment measurement app in school screening for strabismus. BMC Ophthalmol. 2021;21:150.

    Article 

    Google Scholar 

  • Pundlik S, Tomasi M, Liu R, Houston K, Luo G. Development and preliminary evaluation of a smartphone app for measuring eye alignment. Transl Vis Sci Technol. 2019;8:19.

    Article 

    Google Scholar 

  • Yehezkel O, Belkin M, Wygnanski-Jaffe T. Automated diagnosis and measurement of strabismus in children. Am J Ophthalmol. 2020;213:226–34.

    Article 

    Google Scholar 

  • Yeh PH, Liu CH, Sun MH, Chi SC, Hwang YS. To measure the amount of ocular deviation in strabismus patients with an eye-tracking virtual reality headset. BMC Ophthalmol. 2021;21:246.

    Article 

    Google Scholar 

  • Mao K, Yang Y, Guo C, Zhu Y, Chen C, Chen J, et al. An artificial intelligence platform for the diagnosis and surgical planning of strabismus using corneal light-reflection photos. Ann Transl Med. 2021;9:374–74.

    Article 

    Google Scholar 

  • Phanphruk W, Liu Y, Morley K, Gavin J, Shah AS, Hunter DG. Validation of strabis PIX, a mobile application for home measurement of ocular alignment. Transl Vis Sci Technol. 2019;8:9.

    Article 

    Google Scholar 

  • Valente TLA, de Almeida JDS, Silva AC, Teixeira JAM, Gattass M. Automatic diagnosis of strabismus in digital videos through cover test. Comput Methods Prog Biomed [Internet]. 2017;140:295–305. https://doi.org/10.1016/j.cmpb.2017.01.002.

    Article 

    Google Scholar 

  • Weber KP, Rappoport D, Dysli M, Schmückle Meier T, Marks GB, Bockisch CJ, et al. Strabismus measurements with novel video goggles. Ophthalmol [Internet]. 2017;124:1849–56. https://doi.org/10.1016/j.ophtha.2017.06.020.

    Article 

    Google Scholar 

  • Chen ZH, Fu H, Lo WL, Chi Z, Xu B. Eye-tracking-aided digital system for strabismus diagnosis. Health Technol Lett. 2018;5:1–6.

    Article 

    Google Scholar 

  • Chen Z, Fu H, Lo WL, Chi Z. Eye-tracking aided digital system for strabismus diagnosis. Proc – 2015 IEEE Int Conf Syst Man Cybern SMC. 2015;2016:2305–9.

    Article 

    Google Scholar 

  • Miao Y, Jeon JY, Park G, Park SW, Heo H. Virtual reality-based measurement of ocular deviation in strabismus. Comput Methods Prog Biomed. 2020;185:105132.

    Article 

    Google Scholar 

  • Yang HK, Seo JM, Hwang JM, Kim KG. Automated analysis of binocular alignment using an infrared camera and selective wavelength filter. Invest Ophthalmol Vis Sci. 2013;54:2733–7.

    Article 

    Google Scholar 

  • von Noorden GK, Campos EC (Emilio C). Binocular vision and ocular motility: theory and management of strabismus. Mosby; 2002. p. 653.

  • Roper-Hall G. The Hess Screen Test. Am Orthoptic J. [Internet] 2006;56:166–74. https://www.tandfonline.com/doi/full/10.3368/aoj.56.1.166.

  • Lancaster WB. Detecting, measuring, plotting and interpreting ocular deviations. Arch Ophthalmol [Internet]. 1939;22:867–80. http://archopht.jamanetwork.com/article.aspx?articleid=614661.

    Article 

    Google Scholar 

  • Christoff A, David COT, Guyton L. The lancaster red-green test. Am Orthopt J. 2006;56:157–65.

    Article 

    Google Scholar 

  • Watts P, Nayak H, Lim MK, Ashcroft A, al Madfai H, Palmer H. Validity and ease of use of a computerized Hess chart. J AAPOS. 2011;15:451–4.

    Article 

    Google Scholar 

  • Bergamin O, Zee DS, Roberts DC, Landau K, Lasker AG, Straumann D. Three-dimensional Hess screen test with binocular dual search coils in a three-field magnetic system. Invest Ophthalmol Vis Sci [Internet]. 2001;42:660–7. http://www.ncbi.nlm.nih.gov/pubmed/11222524.

    CAS 

    Google Scholar 

  • Roodhooft JM. Screen tests used to map out ocular deviations. Bull Soc Belg Ophtalmol [Internet]. 2007;305:57–67. http://www.ncbi.nlm.nih.gov/pubmed/18018429.

    Google Scholar 

  • Holmes JM, Leske DA, Hohberger GG. Defining real change in prism-cover test measurements. Am J Ophthalmol. 2008;145:381–5.

    Article 

    Google Scholar 

  • Hatt SR, Leske DA, Liebermann L, Mohney BG, Holmes JM. Variability of angle of deviation measurements in children with intermittent exotropia. J AAPOS. 2012;16:120–4.

    Article 

    Google Scholar 

  • Neveu P, Priot AE, Plantier J, Roumes C. Short exposure to telestereoscope affects the oculomotor system. Ophthalmic Physiol Opt. 2010;30:806–15.

    Article 

    Google Scholar