Real-time, volumetric imaging of radiation dose delivery deep into the liver during cancer treatment


  • Jaffray, D. A. & Gospodarowicz, M. K. in Cancer: Disease Control Priorities 3rd edn, Vol. 3 (eds Gelband, H. et al.) (The International Bank for Reconstruction and Development/The World Bank, 2015).

  • Liauw, S. L., Connell, P. P. & Weichselbaum, R. R. New paradigms and future challenges in radiation oncology: an update of biological targets and technology. Sci. Transl. Med. 5, 173sr172 (2013).

    Article 

    Google Scholar 

  • Wambersie, A. ICRU Report 62, Prescribing, recording and reporting photon beam therapy (supplement to ICRU Report 50). ICRU News (1999).

  • ICRU Report 50. Prescribing, I. Recording and Reporting Photon Beam Therapy (International Commission on Radiation Units and Measurements, 1993).

  • Bucci, M. K., Bevan, A. & Roach, M. 3rd Advances in radiation therapy: conventional to 3D, to IMRT, to 4D, and beyond. CA Cancer J. Clin. 55, 117–134 (2005).

    Article 

    Google Scholar 

  • Ling, C. C., Yorke, E. & Fuks, Z. From IMRT to IGRT: frontierland or neverland? Radiother. Oncol. 78, 119–122 (2006).

    Article 

    Google Scholar 

  • Sandler, H. M. et al. Three dimensional conformal radiotherapy for the treatment of prostate cancer: low risk of chronic rectal morbidity observed in a large series of patients. Int. J. Radiat. Oncol. Biol. Phys. 33, 797–801 (1995).

    Article 
    CAS 

    Google Scholar 

  • Lin, C. et al. Effect of radiotherapy techniques (IMRT vs. 3D-CRT) on outcome in patients with intermediate-risk rhabdomyosarcoma enrolled in COG D9803—a report from the Children’s Oncology Group. Int. J. Radiat. Oncol. Biol. Phys. 82, 1764–1770 (2012).

    Article 

    Google Scholar 

  • Ezzell, G. A. et al. Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee. Med. Phys. 30, 2089–2115 (2003).

    Article 

    Google Scholar 

  • Xing, L. et al. Overview of image-guided radiation therapy. Med. Dosim. 31, 91–112 (2006).

    Article 

    Google Scholar 

  • Sterzing, F., Engenhart-Cabillic, R., Flentje, M. & Debus, J. Image-guided radiotherapy: a new dimension in radiation oncology. Dtsch Arztebl. Int. 108, 274–280 (2011).

    Google Scholar 

  • Van Herk, M. Errors and margins in radiotherapy. Semin. Radiati. Oncol. 14, 52–64 (2004).

  • Bortfeld, T., Jokivarsi, K., Goitein, M., Kung, J. & Jiang, S. B. Effects of intra-fraction motion on IMRT dose delivery: statistical analysis and simulation. Phys. Med. Biol. 47, 2203–2220 (2002).

    Article 

    Google Scholar 

  • Brock, K. K. & Dawson, L. A. Adaptive management of liver cancer radiotherapy. Semin. Radiat. Oncol. 20, 107–115 (2010).

    Article 

    Google Scholar 

  • Kron, T. Reduction of margins in external beam radiotherapy. J. Med. Phys. 33, 41 (2008).

    Article 

    Google Scholar 

  • Marks, L. B. et al. Use of normal tissue complication probability models in the clinic. Int. J. Radiat. Oncol. Biol. Phys. 76, S10–S19 (2010).

    Article 

    Google Scholar 

  • Thomas, T. O. et al. The tolerance of gastrointestinal organs to stereotactic body radiation therapy: what do we know so far? J. Gastrointest. Oncol. 5, 236–246 (2014).

    Google Scholar 

  • Ten Haken, R. K., Balter, J. M., Marsh, L. H., Robertson, J. M. & Lawrence, T. S. Potential benefits of eliminating planning target volume expansions for patient breathing in the treatment of liver tumors. Int. J. Radiat. Oncol. Biol. Phys. 38, 613–617 (1997).

    Article 

    Google Scholar 

  • Choi, J.-H., Seo, D.-W., Park, D. H., Lee, S. K. & Kim, M.-H. Fiducial placement for stereotactic body radiation therapy under only endoscopic ultrasonography guidance in pancreatic and hepatic malignancy: practical feasibility and safety. Gut and Liver 8, 88–93 (2014).

    Article 

    Google Scholar 

  • Giraud, P. & Houle, A. Respiratory gating for radiotherapy: main technical aspects and clinical benefits. ISRN Pulmonology 2013, 13 (2013).

    Article 

    Google Scholar 

  • De Los Santos, J. et al. Image guided radiation therapy (IGRT) technologies for radiation therapy localization and delivery. Int. J. Radiat. Oncol. Biol. Phys. 87, 33–45 (2013).

    Article 

    Google Scholar 

  • Balter, J. M. & Cao, Y. Advanced technologies in image-guided radiation therapy. Semin. Radiat. Oncol. 17, 293–297 (2007).

  • Keall, P. et al. On the use of EPID‐based implanted marker tracking for 4D radiotherapy. Med. Phys. 31, 3492–3499 (2004).

    Article 
    CAS 

    Google Scholar 

  • Berbeco, R. I., Neicu, T., Rietzel, E., Chen, G. T. & Jiang, S. B. A technique for respiratory-gated radiotherapy treatment verification with an EPID in cine mode. Phys. Med. Biol. 50, 3669–3679 (2005).

    Article 

    Google Scholar 

  • Chinnaiyan, P., Tomé, W., Patel, R., Chappell, R. & Ritter, M. 3D-ultrasound guided radiation therapy in the post-prostatectomy setting. Technol. Cancer Res. Treat. 2, 455–458 (2003).

    Article 

    Google Scholar 

  • Kerkmeijer, L. G. W. et al. The MRI-linear accelerator consortium: evidence-based clinical introduction of an innovation in radiation oncology connecting researchers, methodology, data collection, quality assurance, and technical development. Front. Oncol. https://doi.org/10.3389/fonc.2016.00215 (2016).

  • Liu, H. & Wu, Q. Evaluations of an adaptive planning technique incorporating dose feedback in image-guided radiotherapy of prostate cancer. Med. Phys. 38, 6362–6370 (2011).

    Article 

    Google Scholar 

  • Mijnheer, B., Beddar, S., Izewska, J. & Reft, C. In vivo dosimetry in external beam radiotherapy. Med. Phys. 40, 070903 (2013).

    Article 

    Google Scholar 

  • Islam, M. K. et al. An integral quality monitoring system for real-time verification of intensity modulated radiation therapy. Med. Phys. 36, 5420–5428 (2009).

    Article 
    CAS 

    Google Scholar 

  • Poppe, B. et al. Clinical performance of a transmission detector array for the permanent supervision of IMRT deliveries. Radiother. Oncol. 95, 158–165 (2010).

    Article 

    Google Scholar 

  • Johnson, D., Weston, S. J., Cosgrove, V. P. & Thwaites, D. I. A simple model for predicting the signal for a head‐mounted transmission chamber system, allowing IMRT in‐vivo dosimetry without pretreatment linac time. J. Appl. Clin. Med. Phys. 15, 270–279 (2014).

    Article 

    Google Scholar 

  • Zhang, W. et al. Dual-Modality X-Ray-induced radiation acoustic and ultrasound imaging for real-time monitoring of radiotherapy. BME Frontiers 2020, 9853609 (2020).

    Article 

    Google Scholar 

  • Xiang, L., Tang, S., Ahmad, M. & Xing, L. High resolution X-ray-induced acoustic tomography. Sci Rep. 6, 26118 (2016).

    Article 
    CAS 

    Google Scholar 

  • Oraiqat, I. et al. An ionizing radiation acoustic imaging (iRAI) technique for real-time dosimetric measurements for FLASH radiotherapy. Med. Phys. 47, 5090–5101 (2020).

  • Lei, H. et al. Toward in vivo dosimetry in external beam radiotherapy using X-ray acoustic computed tomography: a soft-tissue phantom study validation. Med. Phys. https://doi.org/10.1002/mp.13070 (2018).

  • Hickling, S. et al. Ionizing radiation-induced acoustics for radiotherapy and diagnostic radiology applications. Med. Phys. 45, e707–e721 (2018).

    Article 

    Google Scholar 

  • Hickling, S., Hobson, M. & El Naqa, I. Characterization of X-ray acoustic computed tomography for applications in radiotherapy dosimetry. IEEE Trans. Radiat. Plasma Med. Sci. 2, 337–344 (2018).

    Article 

    Google Scholar 

  • El Naqa, I., Pogue, B. W., Zhang, R., Oraiqat, I. & Parodi, K. Image guidance for FLASH radiotherapy. Med. Phys. 49, 4109–4122 (2022).

    Article 

    Google Scholar 

  • Sothmann, T., Blanck, O., Poels, K., Werner, R. & Gauer, T. Real time tracking in liver SBRT: comparison of CyberKnife and Vero by planning structure-based γ-evaluation and dose-area-histograms. Phys. Med. Biol. 61, 1677 (2016).

    Article 
    CAS 

    Google Scholar 

  • Fuss, M. & Salter, B. J. Intensity-modulated radiosurgery: improving dose gradients and maximum dose using post inverse-optimization interactive dose shaping. Technol. Cancer Res. Treat. 6, 197–203 (2007).

    Article 

    Google Scholar 

  • Oku, Y. et al. Analysis of suitable prescribed isodose line fitting to planning target volume in stereotactic body radiotherapy using dynamic conformal multiple arc therapy. Pract. Radiat. Oncol. 2, 46–53 (2012).

    Article 

    Google Scholar 

  • Zlateva, Y., Muir, B. R., El Naqa, I. & Seuntjens, J. P. Cherenkov emission‐based external radiotherapy dosimetry: I. Formalism and feasibility. Med. Phys. 46, 2370–2382 (2019).

    Article 
    CAS 

    Google Scholar 

  • Zlateva, Y., Muir, B. R., Seuntjens, J. P. & El Naqa, I. Cherenkov emission‐based external radiotherapy dosimetry: II. Electron beam quality specification and uncertainties. Med. Phys. 46, 2383–2393 (2019).

    Article 
    CAS 

    Google Scholar 

  • Wang, G., Ye, J. C. & De Man, B. Deep learning for tomographic image reconstruction. Nat. Mach. Intell. 2, 737–748 (2020).

    Article 

    Google Scholar 

  • Gröhl, J., Schellenberg, M., Dreher, K. & Maier-Hein, L. Deep learning for biomedical photoacoustic imaging: a review. Photoacoustics 22, 100241 (2021).

    Article 

    Google Scholar 

  • Van Dyk, J., Battista, J. J. & Bauman, G. S. in The Modern Technology of Radiation Oncology Vol. 3 (ed. Van Dyk, J.) 361–412 (Medical Physics Publishing, 2013).

  • Ku, G., Wang, X., Stoica, G. & Wang, L. V. Multiple-bandwidth photoacoustic tomography. Phys. Med. Biol. 49, 1329 (2004).

    Article 

    Google Scholar 

  • Gutta, S. et al. Deep neural network-based bandwidth enhancement of photoacoustic data. J. Biomed. Opt. 22, 116001 (2017).

    Article 

    Google Scholar